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A time-implicit Monte Carlo collision algorithm has been developed to allow particle-in-cell 
electron transport models to be applied to arbitrarily collisional systems. The algorithm is for- 
mulated for electrons moving in response to electric and magnetic accelerations and subject to 
collisional drag and scattering due to a background plasma. The correct fluid or streaming 
transport results are obtained in the respective limits of strongly or weakly collisional systems, 
and reasonable behavior is produced even for time-steps greatly exceeding the 
magnetic-gyration and collisional-scattering times. 0 1986 Academic Press, Inc. 

0. INTRODUCTION 

In the study of transient phenomena in plasmas, a model for the transport of 
electrons is crucial. Such a model consists of a set of equations describing the elec- 
tron motions combined with a set of algorithms for solving those equations. 
Typically, the equations of motion are some form of Newton’s Laws with suitable 
driving forces, and the solution algorithms frequently must be performed 
numerically on a high-speed computer. For individual electrons, the driving forces 
consist of a slowly varying Lorentz force, due to ambient electric and magnetic 
fields, and a rapidly varying collisional force, due to screened-Coulomb interac- 
tions. For aggregates of electrons, additional driving forces can occur due to spatial 
gradients in the electron properties. 

Plasmas experience transients with a wide range of characteristic time scales. The 
simplest algorithms for discretizing and solving the plasma equations of motion 
calculate the electron transport during a time-step using the initial values of the 
driving forces. These “time-explicit” algorithms are stable and accurate only for 
time-steps smaller than the shortest transient time scales allowed, so they are 
impractical for following the long-time evolution of most plasmas. Such time-step 
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constraints are avoided by “time-implicit” algorithms, which calculate the electron 
transport during a time-step using time-advanced values of the driving forces. 

Successful transport models incorporating time-implicit solution algorithms are 
well established for two limiting cases-the fluid limit, where electrons experience 
many collisions during a characteristic time, and the streaming limit, where elec- 
trons experience no collisions during a characteristic time. In the fluid limit, the 
electrons can be treated as an aggregate whose properties are described by the 
magnetohydrodynamic (MHD) equations, which produce transport fluxes driven 
by the Lorentz force and by density and temperature gradients and resisted by 
collisional drag and scattering. Time-implicit algorithms have been available for 
some time to numerically solve the resulting diffusive transport equations [ 11. In 
the streaming limit, the electrons respond individually to the local Lorentz force, 
and the transport fluxes are accumulations of the individual electron orbits. Time- 
implicit particle-in-cell (PIC) algorithms have recently become available to solve 
Newton’s Laws directly for the electron orbits using the implicit moment method to 
estimate time-advanced values for the fields producing the Lorentz force [2]. 

For more general cases that do not conform to either of these limits, satisfactory 
models have been more elusive. The best success has been achieved with hybrid 
models, which combine MHD algorithms to describe strongly collisional electrons 
with PIC algorithms to describe weakly collisional electrons [3]. Such hybrid 
models supplement their PIC algorithms with a Monte Carlo collision algorithm, 
which determines the effect of collisions on each electron orbit from a sequence of 
random numbers whose probability distribution is chosen to preserve the average 
properties of the collisional force. Up to now, only time-explicit Monte Carlo 
collision algorithms based on the seminal work of Shanny, Dawson, and Greene 
[4] have been available. 

This report describes a time-implicit Monte Carlo collision algorithm for use 
with PIC electron transport schemes. The key innovation is to represent collisional 
scattering as a statistical rotation of the momentum vector, a technique similar to 
that used by Rechester and Rosenbluth [S] to treat stochastic magnetic fields. The 
statistical rotation is constrained to satisfy a generalized Ohm’s Law on the 
average, so the correct diffusive transport is produced in the fluid limit even for 
time-steps greatly exceeding the magnetic-gyration and collisional-scattering times. 
The algorithm thus provides a smooth interpolation between the fluid and stream- 
ing limits. 

The remainder of the report is organized in four sections and an appendix: Sec- 
tion 1 presents the basic electron equations of motion and a discretized solution 
algorithm; Section 2 describes the Monte Carlo collision algorithm; Section 3 
derives the equivalent fluid equations resulting from ensemble averages of the elec- 
tron equations of motion; Section 4 gives some examples of results; and the Appen- 
dix contains some algebra necessary to determine a statistical rotation vector 
satisfying the generalized Ohm’s Law on the average. 
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1. ELECTRON EQUATIONS OF MOTION 

Consider an electron with mass m and charge -e whose instantaneous position, 
momentum and kinematic energy at time t are r(t), p(t), and E(t) s 
J- (p + pc + m c ), where c is the speed of light. If the electron experiences local elec- 
tric and magnetic fields E(r) and B(r) and collisional drag and deflection rates 
f(r, p) and @r, p), then its relativistic equations of motion can be written 

difdt = PC=/&, 

dp/dt=&i’p-(ri+@xp, 

(14 

(lb) 

where P 3 -eE and fi = -eBc/s. Note that collisional deflection is treated like 
magnetic gyration to simplify the form of the momentum equation. Unlike 
magnetic gyration, however, collisional deflection is considered to be a capricious 
process whose properties are best described statistically and whose average effect is 
to resist the forward progress of the electron. Thus if &(r, p) is the average scatter- 
ing (i.e., right-angle-deflection) rate, then 6 must be chosen to satisfy the constraint 
(6 x p) = &(p), where angle brackets denote averages over many deflections. The 
treatment of collisional deflection as a constrained statistical rotation is the key 
innovation of this work and leads directly to a generalized Ohm’s Law: 

d(p)/dt=p-(j‘+h’)(p)-6x (p). (lc) 

In general, the motion of the electron is determined by numerically integrating 
Eqs. (1) using discrete time-steps, and a time-implicit algorithm is desired to avoid 
severe time-step constraints when 1 n 1 and fi are large. Consider two successive 
times t,, and t 1, and for any function f( t) define f0 s f( to), f, = f( t i ), A f E f 1 - fo, 
and f' = f. + 0.5 AJ: Then suitable discretized versions of Eqs. (1) are 

Ar = (p/c=/&‘) At, 

Ap=F-I’p’-(sL+O)xp’, 

(A~)=F-(r+N)(p’)-nx(p’), 

Pa) 

(2b) 

@cl 

whereFr~‘At,~=i”At,~~~‘At,0=8’At,and N=&‘At.Notethat Eqs.(2) 
are time-implicit since their right-hand sides contain the time-advanced momentum 
p’. Furthermore, Eqs. (2a) and (2b) correctly give the electron energy change, de = 
Ap * p’c2/e’ = Ap . Ar/At, as the work done on the electron with no contribution from 
magnetic gyration or collisional deflection. This allows the electron motion, which 
is governed by the half-time momentum p’, to become diffusive in the fluid limit 
without any spurious energy loss. 
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It is convenient to introduce the quantities 

s = (p. + OSF)/( 1 + 0.5r), s2 SE s . s, 

a = 0.5@ + fl)/( 1 + OX), 

p 3 0.5Q/( 1 + 0.5r+ 0.5N), 

s 3 (1 + 0.5r)/( 1 + 0.5r+ 0.5N). 

Equations (2b) and (2~) can then be manipulated to give 

p’ = s - a x p’ = (s - a x s + au * s)/( 1 + c?), W 

(p’ ) = ss - fl x (p’ ) = S(s - b x s + flfl. s)/( 1 + /!?‘). (3b) 

Thus p’ and (p’) depend, respectively, on the source vectors s and Ss and on the 
rotation vectors a and fl. Since a contains the collisional deflection vector 8, it is to 
be chosen statistically with its average properties constrained by Eq. (3b). 

Equations (2a) and (3a) constitute a discretized solution algorithm for the elec- 
tron equations of motion. A Monte Carlo collision algorithm for choosing the 
rotation vector a subject to Eq. (3b) is described in Section 2. Reasonable results in 
both the fluid and streaming limits lend credibility to this solution algorithm. In the 
fluid limit (N% I), the rotation vector fl reduces to the Hall coefficient R/N, and 
Eq. (3b) gives currents parallel, perpendicular, and transverse to the magnetic field 
which depend on this parameter in just the way dictated by MHD theory. In the 
streaming limit (f = N= 0, 8 = 0), the rotation vectors satisfy a = fl= 0.5Q and 
Eq. (3a) gives the detailed electron gyro-orbits when 1 n 1 < 1 and reduces to a 
zero-gyro-radius approximation when 1 R 1 B 1. Note that the zero-gyro-radius 
approximation fails to reproduce field-gradient drifts, but these drifts can be 
recovered by adding a diamagnetic term to the electric field in the source vector s 
without affecting the collision algorithm [2]. 

2. MONTE CARLO COLLISION ALGORITHM 

The collision terms in Eqs. (1) are appropriate for a fast electron moving through 
a stationary background plasma. In this case the predominant collisions are due to 
the screened-Coulomb interaction, a long-range force that produces finite effects as 
accumulations of many small random effects. Collisional drag directly affects the 
electron kinematic energy, so accurate results can be obtained from the discretized 
equations (2) only if the time-step is sufficiently small that r< 1. Collisional scat- 
tering, on the other hand, tends simply to isotropize the electron motion, so 
accurate results should be possible even when N > 1, where a large deflection of the 
electron path during the time-step must be interpreted as an accumulation of many 
small random deflections. Thus while collisional drag can be treated as a con- 
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tinuous process, collisional deflection is best described as a discrete random 
process, which is simulated numerically by the Monte Carlo procedure of selecting 
deflections from a random-number sequence whose probability distribution is 
chosen to preserve the average properties of the screened-Coulomb collisional force. 

Collisional deflection enters the discretized solution algorithm for the electron 
equations of motion through the rotation vector a appearing in Eq. (3a), so the 
collision algorithm must contain a Monte Carlo procedure for choosing a subject 
to the constraint equation (3b). The algebra can be simplified by separating a and p 
into components parallel and perpendicular to the source direction s^= s/s as 
follows: 

a, z a . s^ = a. p’/s, p,=p*i=fl-(Q')/&, 

a+ s (a - a,.? + a,a x i)/( 1 + a:), af = at . a+ = (a2 - a:)/( 1 + a:), 

Bt = (B - Psi + PSS x Ml + 85h P: - Bt . Bt = (b2 - m 1 + P3 

The perpendicular components were chosen to satisfy a+ . Q' = 0 and fl+ . (Q’ ) = 0, 
and this decomposition allows Eqs. (3) to be reduced to 

p’=s-a+ xp’=(s-a+ xs)/(l+a:), 

(Q') = SS - fit X (Q') = s(S - B+ X S)/( 1 + fit). 

(44 

(4b) 

Thus the collision algorithm need only contain a Monte Carlo procedure for choos- 
ing a+ such that 

(1/(1+a~))=Wl+B$ (54 

(a+l(l+a5)>=sS+/(l+PS). (5b) 

Some guidance is obtained from the case n = 0, for which collisional deflection of 
the electron path during the time-step is symmetric about J and can be represented 
by spherical rotation angles ($4. If j+ is any unit vector perpendicular to J, then 

a+ = tan(O.%)( - sin @+ + cos $s^ x j+), 

where 4 is uniformly probable on [0, 2711 and 8 has a probability distribution on 
[0, rc] such that (co~~(O.50)) = S. Since 8 is the accumulation of many small ran- 
dom deflections, the central limit theorem of probability theory guarantees that its 
distribution will be some sort of Gaussian. While a Gaussian distribution can be 
imposed at each time-step, this seems unnecessary since the central limit theorem 
also guarantees that any member of a broad class of distributions for 8 will produce 
a Gaussian distribution for the accumulation of 0 over several time-steps. Thus the 
probability distribution for 8 can be chosen somewhat arbitrarily. 

For the case $2 # 0, magnetic gyration will contribute to the deflection of the elec- 
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tron path during the time-step, and the symmetry about s^ will be broken. The sim- 
plest way to generalize the Q = 0 expression for a+ is to add the magnetic gyration 
vector (see Appendix): 

a+ = fit/S + tan(O.%)( - sin #s^+ + cos ds^ x S^+), (6) 

where 4 is again uniformly probable on [0,2n] and 8 must be chosen such that 
co~~(O.58) = S2/(S + /3: - 5’#) to satisfy the constraint equations (5). While a deter- 
ministic choice for 8 may seem to place excessive faith in the arbitrariness of the 8 
distribution, expression (6) with only 4 chosen randomly works surprisingly well 
for all cases having b< 0.5. When j?>O.5, however, collisions fail to partition the 
electron energy equally among the three spatial degrees of freedom even after many- 
collision times-energy is depleted from the direction parallel to the magnetic field. 
Several more complicated expressions for a+ have been examined, but none has yet 
been found which allows collisions to equipartition the electron energy for large 
values of /I, so the simple expression (6) has been used for all the examples of 
results given in Section 4. Note that the condition /I < 0.5 is automatically satisfied 
unless I$‘2 1 > 0.5(r+ N), in which case the time-step must be constrained to ensure 
that InI -0.5(r+N)< 1. 

3. EQUIVALENT FLUID EQUATIONS 

The new time-implicit Monte Carlo collision algorithm is meant to allow PIC 
electron transport models to be applied to arbitrarily collisional systems, so it is 
useful to examine the fluid limit, in which the electron properties of interest are the 
local charge and current densities. Since these densities are defined as 
accumulations of many individual electron orbits, they can be treated as continuous 
functions and are governed by the equivalent fluid equations resulting from ensem- 
ble averages of the electron equations of motion. These ensemble averages 
reproduce the continuity equation and generalized Ohm’s Law characteristic of 
MHD models. 

This can be illustrated by considering an ensemble of nonrelativistic electrons in 
a small cell volume surrounding some position r at time t. Let the ith electron in 
the ensemble have position ri(t) and velocity v,(t) and contribute to the aggregate 
properties at position r through a weight function Wi(r, t), where wi depends on 
position and time only through the quantity r - rJt). The accumulated charge and 
current densities and the electron pressure and resistivity tensors are defined by 

4th t) E -e 1 Wi(r, f), 

P(r, t) = m C viviwi(r, t), 

j(r, t) - -e 1 viwi(r, t), 

rj. j(r, t) = -e 1 (pi +&J viwi(r, t), 

where C represents a summation over all the electrons in the ensemble. The non- 
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relativistic versions of the electron equations of motion (1) along with the relation 
&Jar = -vi . VW, then give 

aqjat= -V-j, (74 

aj/at=(-e/m)(qE+jxB/c-V-P)-ii-j, 0) 

where V is the spatial gradient. Equations (7) constitute the equivalent fluid 
equations for the ensemble and are indeed seen to be the continuity equation and 
generalized Ohm’s Law of MHD theory. In the notation of Section 1, time-implicit 
discretized versions of Eqs. (7) are 

Aq = ( - V. j’) At, 

Aj = ( -e/m)(q’E’ + j’ x B’/c - V. PO) At - r&, * j’ At. 

(84 

@b) 

The pressure and resistivity tensors are evaluated at time to to avoid having to 
estimate the time-advanced electron orbits. Time-advanced values of the charge and 
current densities can then be obtained by solving Eqs. (8) for q’ = q,, + 0.5 Aq and 
j’ = j, + 0.5 Aj. 

4. EXAMPLES OF RESULTS 

To demonstrate the salient features of the time-implicit Monte Carlo collision 
algorithm, some examples of results are shown in Figs. l-3. These examples 
represent the average response of 400 electrons to various constant electric, 
magnetic, and collisional accelerations. For a given set of accelerations, all electrons 
were initialized identically and moved according to Eqs. (2a), (4a), and (6), so the 
only differences in the electron motions were due to the random choices for the 
azimuthal collisional deflection angle 4. For all examples, the collisional drag rate 
was set to zero and the collisional scattering rate was set to one inverse time unit. 
The initial electron motion was along a coordinate axis, any nonzero electric field 
was along the same coordinate axis, and any nonzero magnetic field was along a 
different coordinate axis. The electron motions were followed for 1000 time units. 

Figure 1 compares the time-dependent mean-squared electron displacements 
using time-steps of (a) one time unit and (b) ten time units when the electric and 
magnetic fields are zero. In either case, the total mean-squared displacement and its 
components along the three coordinate axes are straight lines as would be obtained 
from a random-walk diffusion, and the motion is isotropic since the three com- 
ponents overlie one another. Furthermore, the total mean-squared displacements 
after 1000 time units in the two cases differ by only 1% (2114 compared to 2088). 
Thus the time-implicit collision algorithm produces an accurate result using a ten- 
fold larger time-step than a time-explicit collision algorithm could safely use. 
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FIG. 1. Mean-squared displacements versus time for a random-walk diffusion. (a) Time-step is one 
scattering time. (b) Time-step is ten scattering times. 
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FIG. 2. Mean-squared velocities versus time for an Ohmic dissipation. (a) Time-step is one scattering 
time. (b) Time-step is ten scattering times. 
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Figure 2 compares the time-dependent mean-squared electron velocities using 
time-steps of (a) one time unit and (b) ten time units when the magnetic field is 
zero but the electric field is finite. In either case, the total mean-squared velocity 
and its components along the three coordinate axes are straight lines as would be 
obtained from an Ohmic dissipation, and the energy has been equipartitioned since 
the three components overlie one another. Furthermore, the total mean-squared 
velocities after 1000 time units in the two cases differ by only 1% (20.44 versus 
20.63). Thus the time-implicit collision algorithm again produces an accurate result 
using a ten-fold larger time step than a time-explicit collision algorithm could safely 
use. 

Figure 3 compares the time-dependent mean-squared electron velocities using 
magnetic fields such that (a) /I = 0.5 and (b) /I = 1 when the time-step is ten time 
units and the electric field is zero. In either case, the total mean-squared velocity is 
constant reflecting energy conservation during magnetic gyration and collisional 
deflection, but the energy is not equipartitioned since the components along the 
three coordinate axes do not overlie one another. The component along the 
magnetic field axis is depleted slightly for b = 0.5 and grossly for /I = 1, and this 
illustrates the requirement p < 0.5 mentioned in Section 2. It is possible that this 
constraint can be removed by choosing the polar collisional deflection angle 0 ran- 
domly rather than deterministically, but this has yet to be proven. 

The above examples demonstrate that the time-implicit Monte Carlo collision 
algorithm produces reasonable behavior in the fluid limit even for time-steps greatly 
exceeding the magnetic-gyration and collisional-scattering times. Since the collision 
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I 

FIG. 3. Mean-squared velocities versus time for a magnetic gyration with collisional deflection. (a) 
/3 = 0.5. (b) b = 1.0. 
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algorithm also produces reasonable behavior in the streaming limit, it is hoped that 
it will allow PIC electron transport models to be applied to arbitrarily collisional 
systems. 

APPENDIX: STATISTICAL ROTATION VECTOR 

The statistical rotation vector must combine a deterministic magnetic gyration 
with a probabilistic collisional deflection subject to the constraint that a generalized 
Ohm’s Law be satisfied on the average. Equations (4) show that only the com- 
ponents of the rotation vector perpendicular to the source direction need be deter- 
mined, but the algebra is complicated by the nonlinear nature of the constraint 
equations (5). It is thus not obvious that Eq. (6), a linear superposition of a 
magnetic gyration and a collisional deflection, yields a suitable rotation vector. 

To verify that it does, introduce the quantities g and Y+ z y+s^+ and let 

a+ = y+/a + tan(0.58)( - sin @+ + cos 43 x S^+), (Ala) 

1 + a: = sec2(0.50) + $/a2 - (2y+/o) tan(0.58) sin Q = a - b sin 4, @lb) 

where 4 is to be uniformly probable on [0,271-J. Averaging over I$ gives 

<l/(1 +af))4 = l/JFE Wa) 

(a+/(1 + a:)>, = Cr+b - (d&+)(a- J-)1 &1,/m. Wb) 

Choosing yt = yt/cr - (o/2y+)(a - ,/m) then gives 1 + yi = crJm and 
tan2(0.58) = (1 - o)(a + y:)/a2, so Eqs. (A2) reduce to 

<l/(1 +a:)>, =a/(1 +Y:), 

(at/(1 + a:)), = art/Cl + rf). 

Equations (5) then show that further averaging over 0 must give 

<41+ $)>e = S/(1 + P:), NW 

(wtl(l + Y:)>e = Sl+/(l + P:). Wb 1 

The simplest choice is Q = S and Yt = fit, which gives co~~(O.50) = S2/(S + /?$ - S/If) 
and verifies Eq. (6). 
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